√画像をダウンロード a^3 b^3 c^3-3abc 291175-A^3+b^3+c^3-3abc=1
A^3 b^3 c^3 3abc There is a algebraic identity to solve this problem The identity is a^3 b^3 c^3 3abc =(abc){a^2b^2c^2(abbcca)} If you want to know the proof of this identity you can tell me in comment so, put the values in identity a^3 b^3 c^3 3abc=(9){125(—22)} a^3 b^3 c^3 3abc=9()=1323Main article Law of cosines The Pythagorean theorem is a special case of the more general theorem relating the lengths of sides in any triangle, the law of cosines a 2 b 2 − 2 a b cos θ = c 2 , {\displaystyle a^ {2}b^ {2}2ab\cos {\theta }=c^ {2},}Dec 29, · Factorize a^3 b^3 c^3 3abc Let f (a)= a 3 b 3 c 3 −3abc be a function in a Now, putting a = (bc), we get f ( (bc)) = b 3 c 3 – (bc) 3 3bc (bc) = (bc) 3 – (bc) 3 Proof Of A 3 B 3 C 3 3abc When A B C 0 Youtube A^3+b^3+c^3-3abc=1